JAMES RUSE AGRICULTURAL HIGH SCHOOL TERM 1 ASSESSMENT 1997 YEAR 12 3/4 UNIT

Time: 85 minutes.

Hand in each question separately

QUESTION 1 (10 marks)

- (a) After investing \$P for 6 years at a rate of 5% per annum compounded annually, the amount matured to \$268. Find P to the nearest dollar.
- (b) Differentiate with respect to x:
 - (i) $y = \cos(x^2)$
 - (ii) $y = \log_c(\sin 2x)$
- (c) Find the equation of the tangent to the curve $y = \csc x$ at $x = \frac{\pi}{6}$.

QUESTION 2 (10 marks)

- (a) Find the general solution to: $\cos 2x 1 = 0$.
- (b) Use the table of integrals provided to find:

$$\int \left(\frac{\sec 4x \tan 4x}{4} \right) dx$$

- (c) Evaluate $\cos^{-1}\left(-\frac{1}{2}\right)$ exactly (answer in <u>radians</u>).
- (d) Differentiate with respect to x:

$$y = \cos^{-1}\left(\frac{x}{4}\right)$$

(e) Without the use of calculus, find the minimum value of $(\tan^{-1}x + \sin x)$ for $0 \le x \le 1$. Justify your answer.

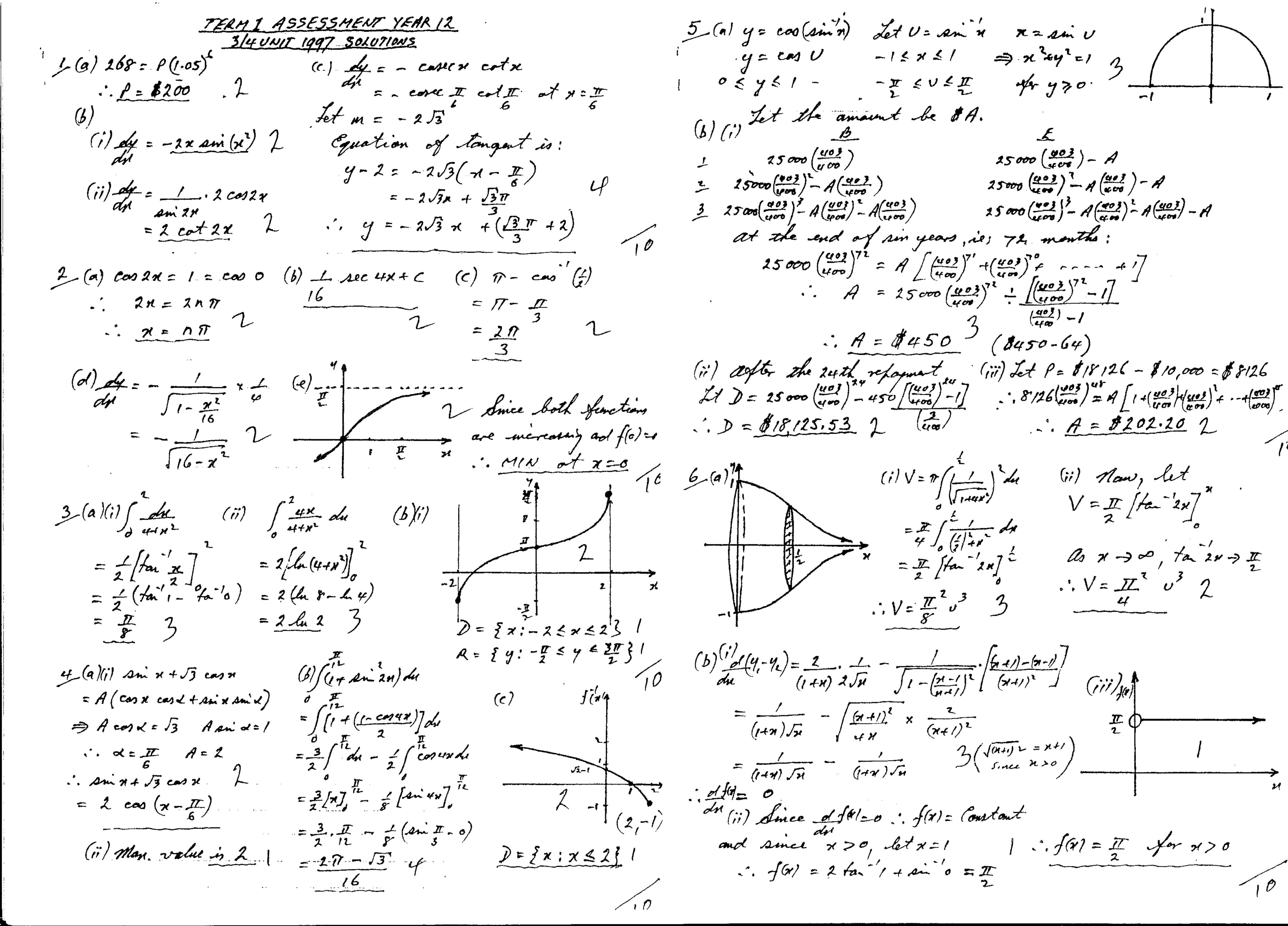
QUESTION 3 (10 marks)

- (a) Evaluate: (i) $\int_{0}^{2} \frac{dx}{4 + x^{2}}$ (ii) $\int_{0}^{2} \frac{4x}{4 + x^{2}} dx$
- (b) (i) Draw a neat sketch of: $y = \frac{\pi}{2} + 2 \sin^{-1} \left(\frac{x}{2}\right)$
 - (ii) State its DOMAIN and RANGE.

QUESTION 4 (10 marks)

- (a) (i) Express $(\sin x + \sqrt{3}\cos x)$ in the form $A\cos(x-\alpha)$ for A>0 and α acute.
 - (ii) Find the maximum value of $(\sin x + \sqrt{3}\cos x)$.

(b) Evaluate:
$$\int_{0}^{\frac{\pi}{12}} (1 + \sin^{2} 2x) dx$$


(c) Given that $f(x) = 2 - (x + 1)^2$ is defined for $x \ge -1$ and has an inverse $f^{-1}(x)$, neatly sketch the graph of $y = f^{-1}(x)$.

QUESTION 5 (10 marks)

- (a) Draw a neat sketch of $y = \cos(\sin^{-1}x)$, clearly showing all x,y intercepts.
- (b) John takes out a \$25,000 loan at 9% per annum, the interest compounded monthly, and agrees to pay the loan by equal monthly instalments over six years.
 - (i) Show that each monthly repayment is approximately \$450.
 - (ii) Assuming he repays \$450 per month, how much is still owed after making the 24th repayment?
 - (iii) After the 24th repayment he makes a lump sum payment of \$10,000. If he wishes to still make 48 more repayments, what would be the new value of each repayment?

QUESTION 6 (10 marks)

- (a) The area bounded between the co-ordinate axes, the curve $y = \frac{1}{\sqrt{1 + 4x^2}}$ and the line $x = \frac{1}{2}$ is rotated about the x axis.
 - (i) Find the volume generated by the rotated area.
 - (ii) Determine the volume as x increases indefinitely.
- (b) Given that $y_1 = 2 \tan^{-1} \sqrt{x}$ and $y_2 = \sin^{-1} \left(\frac{x-1}{x+1} \right)$ for x > 0,
 - (i) evaluate $\frac{d}{dx}(y_1 y_2)$.
 - (ii) If $f(x) = y_1 y_2$, deduce that f(x) is a constant, and find the value of the constant.
 - (iii) Draw a neat sketch of the function f(x).

